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We study properties of magnetic field-induced Bose-Einstein condensate of triplons as a function of tem-
perature and the field within the Hartree-Fock-Bogoliubov approach including the anomalous density. We show
that the magnetization is continuous across the transition, in agreement with the experiment. In sufficiently
strong fields the condensate becomes unstable due to triplon-triplon repulsion. As a result, the system is
characterized by two critical magnetic fields: one producing the condensate and the other destroying it. We
show that nonparabolic triplon dispersion arising due to the gapped bare spectrum and the crystal structure has
a strong influence on the phase diagram.
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Bose-Einstein condensation �BEC�, a macroscopic quan-
tum phenomenon, occurs in various systems of bosons, in-
cluding, in addition to atoms, quasiparticles in systems out of
equilibrium such as excitons and polaritons �for example,
Ref. 1�. Theory predicts that quantum spin excitations in sol-
ids, being Bose quasiparticles, can at certain conditions build
the condensate, and magnetic ordering in various systems
can be understood in terms of the BEC of these
excitations.2–6 The experimental observation7 of magnetic
field-induced BEC of triplons, that is, the spin S=1 quasipar-
ticles, in antiferromagnetic TlCuCl3 produced a diverse re-
search field.8–17 In this compound, the triplon branches with
Sz=−1,0 ,1 are separated from the ground state by a rela-
tively small gap �. For this reason, the Zeeman interaction in
a modest external magnetic field Hext can close the gap for
the Sz=−1 states. In contrast to atomic gases, where the total
particle number is constant, for triplons it is proportional to
magnetization M�T ,Hext� induced by Hext. The density of
triplons rapidly increases with the field, and they undergo the
BEC leading to a magnetic ordering. This field-induced
BEC, which occurs at the scale on the order of few K, has
been observed in a variety of quantum antiferromagnets.17

The condensate properties crucially depend on interaction
of the particles.18 For the atomic BEC at T=0 the interatomic
repulsion can lead to the condensate instability when the
concentration becomes large enough.19 Another general fea-
ture clearly seen in the triplon BEC is the dependence of its
physics on the bare dispersion of the quasiparticles �k. The
nonparabolic bare dispersion of triplons20 leads to a non-
trivial dependence of the transition temperature Tc on the
concentration ��M�T ,Hext� and, hence, on Hext. The bare
dispersion, being itself Hext independent, determines the in-
terplay of kinetic and potential energies of a macroscopic
system and, therefore, plays a crucial role in the BEC prop-
erties. The effects of the bare dispersion are clearly seen
experimentally as the � dependence Tc������. The exponent
���� approaches 2/3 at low concentrations �low Tc�,11 as pre-
dicted for the parabolic �k, while at T�2.5 K, ���� is close
to 0.5.

Here we establish theoretical phase diagram of the field-
induced triplon BEC based on the Hartree-Fock-Bogoliubov
�HFB� approximation taking into account also a nonpara-

bolic dispersion and determine the fields Hext
�1� and Hext

�2�

�Hext
�1�, corresponding to the BEC onset and to the instability.

A problem in the current theoretical description of the tran-
sition at Hext

�1� is its predicted discontinuity. We show that this
result is an artifact of the conventional Hartree-Fock-Popov
�HFP� approximation, neglecting the anomalous density
terms. When the anomalous density is taken into account, the
theory correctly predicts the continuous transition. For this
reason, the HFB method is more appropriate to study the
BEC than the HFP one. We find here the stability region of
the triplon BEC in the T ,Hext plane and prove that its bound-
aries strongly depend on the dispersion �k. Results on
triplons and on cold atoms can be compared to foster the
understanding of the similarities and differences of their
BEC.

The triplons form a nonideal Bose gas4,7,20 with contact
repulsive interaction described by the Hamiltonian:

Ĥ =� dV��†�r�K��r� +
g

2
��†�r���r��2� , �1�

where K is the kinetic energy operator and g is the coupling
constant, and we adopt the units kB=1, �=1, and V=1 for
the crystal volume. Below the critical temperature Tc the
global gauge symmetry becomes broken as realized by the

Bogoliubov shift in the field operator: ��r�=v+ �̃�r�. Here

the condensate order parameter v and �̃�r� define the density
of condensed and uncondensed particles, respectively: �0

=v2 and �1= 	�̃†�r��̃�r�
. The grand canonical Hamiltonian

is ĤG= Ĥ−	�, where 	 is the chemical potential and the
total density �=�0+�1 is uniquely determined by Hext. The
density � is considered as a dimensionless quantity. After the

Bogoliubov shift one presents the grand Hamiltonian ĤG in

terms of second quantization operators as ĤG=H0+H1+H2
+H3+H4 with21

H0 = − 	�0 + �g�0
2/2� ,

H2 = �k
� ���k − 	 + 2g�0�ak

†ak +
g�0

2
�aka−k + H.c.� ,
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H4 =
g

2�k,p,q
� ak

†ap
†aqak+p−q, �2�

where the prime shows that zero momentum states are ex-
cluded. Similarly defined linear �H1� and cubic �H3� terms
having zero mean-field approximation �MFA� expectation
values are omitted.

Now we implement the HFB approximation:21,22

ak
†ap

†aqam → 4ak
†am	ap

†aq


+ aqam	ak
†ap

†
 + ak
†ap

†	aqam
 − 2�1
2 − 
1

2, �3�

where 	ak
†ap
=�k,pnk, 	akap
=�k,−p
k, and nk and 
k are re-

lated to the normal �1=�knk and anomalous 
1=�k
k den-
sities. The grand Hamiltonian in this approximation involves

only zero H̃0 and second-order H̃2 contributions in ak ,ak
†:

H̃0 = − 	�0 +
g

2
��0

2 − 2�1
2 − 
1

2� ,

H̃2 = �k
� ��kak

†ak +
X1

4
�aka−k + H.c.� , �4�

where �k=�k−	+2g� and

X1 = 2g��0 + 
1� . �5�

It follows from Eq. �4� that for T�Tc the H̃2 term is diagonal
and hence, the triplon density is given by the same formula
as in the widely used HFP approximation

��T � Tc� = �k
1

e�k/T − 1
� �k

1

e��k−	eff�/T − 1
, �6�

where 	eff=	−2g�. In the BEC regime one performs Bogo-
liubov transformation

ak = ukbk + vkb−k
† , ak

† = ukbk
† + vkb−k, �7�

with �bk ,bp
†�=�k,p and 	bk

†b−k
† 
= 	bkb−k
=0. As a result, the

grand Hamiltonian is transformed to the Bogoluibov form

H = H̃0 + �kEkbk
†bk + 1

2�k�Ek − �k� , �8�

where 	bk
†bk
=nB�Ek ,T�=1 / �exp�Ek /T�−1� with the phonon

Goldstone mode dispersion Ek
2 =�k

2 −X1
2 /4. At small mo-

menta, this mode is a collective excitation of the condensate
carrying spin Sz=−1, while at large momenta it becomes the
bare triplon mode.

In accordance with Hugenholtz-Pines theorem23 at small k
the phonon dispersion is linear: Ek�ck+O�k2�, where c can
be interpreted as the speed of sound. This is achieved by
setting �k−X1 /2=�k, that is, by

	 − g�0 − 2g�1 + g
1 = 0. �9�

This choice yields Ek=��k��k+X1� with c=�X1 /2m, where
m is the triplon effective mass. It can be shown19,21 that X1 is
related to the normal and anomalous self-energies as n
=X1 /2+	 and a=X1 /2, respectively. The quantity X1 plays
a special role in our analysis: when X1�0, the condensate is
stable, otherwise it decays due to triplon-triplon
interaction.24–26 Below we find X1 in the T−Hext plane and

determine the stable BEC region by the condition X1�0.
Using the explicit uk=���k+Ek� /2Ek and vk

=���k−Ek� /2Ek, one obtains

�1 = �k	ak
†ak
 = �k���kWk/Ek� − �1/2�� ,


1 = �k	aka−k
 = 2�kukvkWk = −
X1

2
�k

Wk

Ek
, �10�

where Wk=nB�Ek ,T�+1 /2. Near the transition, T→Tc the
condensate fraction vanishes: �0→0, and Eq. �5� yields X1
=0. In the triplon BEC, the critical density �c corresponds to
	eff=0, i.e., �c=	 /2g. Therefore, at a given chemical poten-
tial 	= g̃	BHext−�, where g̃ is the electron Landé factor, Tc
is determined by knB��k ,Tc�=	 /2g.

To perform MFA calculations one starts by solving Eqs.
�5� and �9� with �1 and 
1 given by Eq. �10�. In contrast to
the BEC of atomic gases, in the triplon problem, the chemi-
cal potential is the input parameter, whereas the densities are
the output ones. Bearing this in mind, we rewrite Eqs. �5�
and �9� as

X1 = 2	 + 4g�
1 − �1�, �0 =
X1

2g
− 
1. �11�

Using dimensional regularization at T=0, we can find from
Eq. �10� more explicit expressions for the densities

�1 = �1�T = 0� +� d3k

�2��3nB�Ek,T�
�k + X1/2

Ek
,


1 = 
1�T = 0� −� d3k

�2��3nB�Ek,T�
X1/2
Ek

, �12�

where 
1�T=0�=3�1�T=0�=�2�mX1�3/2 /4�2, as shown in
Ref. 22. By setting in all above formulas 
1=0, one arrives
at the HFP approximation,7,20 and particularly

X1
�HFP� = 2	 − 4g�1, �0 =

X1
�HFP�

2g
. �13�

The above Eqs. �11�–�13� can be applied for any realistic �k.
It is instructive to note that for the parabolic dispersion �k
=k2 /2m, the BEC can be fully described by only two param-
eters ��	m3 g2 and t�T /Tc with Tc= c̃�	 /g�2/3 /m, c̃
=���2 /g3/2�1��2/3=2.0867, where g3/2�z� is the Bose
function.18 The parameter � is an analog of the gas
parameter18 of atomic BEC.

Since the MFA �both HFB and HFP� calculations are
based on Eqs. �11� and �12�, a question about the existence of
positive solutions for X1 arises. To analyze qualitatively the
existence of the physical solutions, we consider T=0 case.
Here, the HFP Eq. �13� is simplified by substitution ZHFP
�X1

�HFP� /2	 to 1=ZHFP+2ZHFP
3/2 �� /3�2 and has physical

solutions ZHFP�0 for any ��0. This remains valid for all
t�1 at any concentration �. However, in the HFB approxi-
mation the situation is different: even at t�1, the physical
solutions of Eq. �11� can disappear if � exceeds a critical
value �c. For example, at T=0, Eq. �11� for Z�X1 /2	 sim-
plifies as
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1 = Z − �4Z3/2��/3�2� . �14�

When � exceeds �c=�4 /12, the right-hand side in Eq.
�14� is less than 1 for any Z�0, therefore, it has no positive
solutions, and, as a result, X1 acquires an imaginary part.
Bearing in mind that �=	m3 g2= �	Bg̃Hext−��m3 g2, one
concludes that even at T=0, if the Hext is strong enough the
speed of sound c=�Z	 /m becomes complex and, hence, the
BEC is unstable.

To calculate � and X1 one needs the bare �k. Misguich and
Oshikawa20 demonstrated that only with the exact �k one can
explain the overall �c−Tc dependence. Here we apply a simi-

lar approach, using a simpler, “relativistic” �k

=��2+J2k2 /4−�, generic for systems with gapped
spectrum. This choice leads to �c�Tc

2 at higher and �c
�Tc

3/2 at lower T’s, respectively.27,28 Here the effective ex-
change J=2�� /m is chosen to match the parabolic and the
relativistic �k at small k.

In numerical calculations we used parameters by Yamada
et al.11 for TlCuCl3: m=0.0204 K−1, �i.e., m=0.261
�10−25 g�, unit-cell size 0.79 nm, �=7.1 K, g=313 K, and
g̃=2.06. We neglect a weak renormalization of the model
parameters by temperature-dependent many-body effects,
which can slightly shift the stability region boundary, since
we consider the regime of low T and �. This assumption
yields a perfect agreement of theory and experiment20 in a
similar range of T and �. We begin with the comparison of
the HFB and HFP approaches for the density � in a constant
Hext. Figure 1 shows a continuous plot of ��T ,Hext� obtained
with the HFB approach,29 in full agreement with the
experiment11,12 and in contrast to the HFP approximation. In
Fig. 2 we present the phase diagram obtained in the HFB for
the parabolic and the relativistic �k. Solid curves in these
figures present Tc vs Hext obtained from knB��k ,Tc�
=	 /2g. The dashed lines present the BEC stability bound-
ary: there is no X1�0 solutions to the gap equations in the
regions below these lines. Therefore, the HFB approach pre-
dicts the existence of a stable �the region between solid and
dashed lines� and unstable BEC zones �the region below the
dashed line�. As expected, at low T and small Hext the stabil-

FIG. 1. �Color online� Comparison of the HFB �solid� and the
HFP �dashed lines� results for the triplon density. The HFB ap-
proach shows a continuous behavior, which fully agrees with the
experimental data �Refs. 11 and 12� while the HFP approach leads
to the discontinuity. The corresponding Hext are marked near the
plots.

FIG. 2. �Color online� Phase diagram for the �a� parabolic and
�b� relativistic triplon dispersion in the HFB approximation.

FIG. 3. �Color online� Triplon density as a function of T for
relativistic �solid� and parabolic �dashed lines� dispersion in the
HFB approximation for Hext marked near the plots. The plot for
H=12.5 T �upper curves� shows two anomalies, one of them
caused by the instability.

FIG. 4. �Color online� Condensate density fraction for relativis-
tic �solid line� and parabolic �dashed line� �k in the HFB approxi-
mation for Hext marked near the plots.
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ity region in Figs. 2�a� and 2�b� is the same for both �k. In
general, the relativistic dispersion leads to a narrower stabil-
ity zone than the parabolic one. Note that magnetization
measurements on TlCuCl3 have been done for Hext between
5.1 and 9 T.11,12 It would be interesting to experimentally
study its behavior at higher Hext to explore the instability
region.30 A direct access to the dispersion and damping of the
phononlike mode in TlCuCl3 can be achieved in the inelastic
neutron scattering measurements.31

Density � as a function of temperature is presented in Fig.
3 for two Hext. At relatively weak fields, e.g., Hext=7.0 T the
magnetization exhibits only one anomaly at T=Tc while at
stronger one Hext=12.5 T, two anomalies are present. The
minimum at the solid line at 6.2 K is the onset of the BEC,
while the anomaly at T slightly less than 3 K is due to the
condensate decay. Similar physical behavior can be seen in
Fig. 4, which shows the BEC fraction �0 /��100%. This
fraction is rather large ��95% for Hext=7.5 T at T=0� and
rapidly decreases with increasing the temperature. In both
Figs. 3 and 4 the curves for Hext=12.5 T start at T�3 K
since the BEC is unstable below this T. However, Fig. 4
shows that even close to this point the condensate fraction is
approximately 70%, and, therefore, in the instability zone the
condensate can exist for a short time32 determined by the

imaginary part of the self-energy X1. This regime will be
considered in an extended paper.

In summary, we have theoretically established the phase
diagram of the field-induced triplon BEC in quantum antifer-
romagnets in the T−Hext plane for a model relevant for the
TlCuCl3 compound. Our approach is based on the HFB ap-
proximation taking into account the anomalous density in the
condensate phase. We have shown that �i� at the BEC tran-
sition the magnetization remains continuous demonstrating a
minimum, in agreement with the experiment, �ii� in high
magnetic fields the condensate becomes unstable due to the
triplon-triplon repulsion, resulting in interaction of quasipar-
ticles, and found the stability boundaries. The nonparabolic
dispersion of triplons determined by the crystal structure has
the crucial effect on the phase diagram by changing the
boundaries Hext

�1� and Hext
�2� and making the stability region

smaller.
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